Transformation of 1,1-dichloro-2,2-(4-chlorophenyl)ethane (DDD) by Ralstonia eutropha strain A5
نویسندگان
چکیده
منابع مشابه
Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstonia eutropha H16.
The gene loci ehyAB, calA, and calB, encoding eugenol hydroxylase, coniferyl alcohol dehydrogenase, and coniferyl aldehyde dehydrogenase, respectively, which are involved in the first steps of eugenol catabolism in Pseudomonas sp. strain HR199, were amplified by PCR and combined to construct a catabolic gene cassette. This gene cassette was cloned in the newly designed broad-host-range vector p...
متن کاملFormate dehydrogenase from Ralstonia eutropha
1 Spectroscopic and kinetic properties of the molybdenum-containing, NAD+-dependent formate dehydrogenase from Ralstonia eutropha. Dimitri Niks, Jayant Duvvuru, Miguel Escalona, and Russ Hille Department of Biochemistry, University of California, Riverside, Riverside, CA 92521 Running title: Formate dehydrogenase from Ralstonia eutropha To whom correspondence should be addressed: Prof. Russ Hil...
متن کاملAerobic degradation of methylene blue from colored effluents by Ralstonia eutropha
The present paper has examined the degrading ability of phenol-oxidizing bacterium, Ralstonia eutropha, for biological removal of methylene blue (MB) from aqueous solutions under aerobic conditions. Results show that MB has been extensively eliminated as a co-metabolism in the presence of supplementary carbon (glucose) and nitrogen (yeast extract and peptone) sources and the experimental observ...
متن کاملRepression of phenol catabolism by organic acids in Ralstonia eutropha.
During batch growth of Ralstonia eutropha (previously named Alcaligenes eutrophus) on phenol in the presence of acetate, acetate was found to be the preferred substrate; this organic acid was rapidly metabolized, and the specific rate of phenol consumption was considerably decreased, although phenol consumption was not abolished. This decrease corresponded to a drop in phenol hydroxylase and ca...
متن کاملThe glyoxylate bypass of Ralstonia eutropha.
The glyoxylate bypass genes aceA1 (isocitrate lyase 1, ICL1), aceA2 (isocitrate lyase 2, ICL2) and aceB1 (malate synthase, MS1) of Ralstonia eutropha HF39 were cloned, sequenced and functionally expressed in Escherichia coli. Interposon-mutants of all three genes (DeltaaceA1, DeltaaceA2 and DeltaaceB1) were constructed, and the phenotypes of the respective mutants were investigated. Whereas R. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: FEMS Microbiology Ecology
سال: 2000
ISSN: 0168-6496,1574-6941
DOI: 10.1111/j.1574-6941.2000.tb00690.x